

Combustion Chemistry Group Theory and Modeling

Ahren Jasper, Judit Zádor, and Jim Miller

Predictive Chemical Kinetics

Methods

- High-level quantum chemistry
- Transition state theory development
- Master equation analysis
- Experimental validation
- Inform detailed reaction mechanisms

Recent applications

 1,4-dioxane, diacetyl, halogenated precursor, etc., decompositions

propene + OH (exp: Taatjes, Sheps)

phenyl + propargyl (exp: Osborn)

- CH₃ + X, CH₂ + X; X = OH, HO₂, halogens
- Butanol, Propane, DME, etc.

Automated PES exploration (NEW)

One major bottleneck to predictive chemical kinetics calculations is the large human effort required to explore complicated potential energy surfaces. We are developing automated searching procedures.

Judit Zádor, Early Career LDRD

Theoretical uncertainties

We are validating & quantifying the errors in our q.c. approaches, with an emphasis on quantifying how this uncertainty propagates into the predicted kinetics.

Direct dynamics

We are developing strategies for coupling our dynamics codes directly with q.c. codes, often relying on high performance DOE and SNL computing resources.

"Loose" transition states

Extended fragment separations Low-frequency motions Highly anharmonic

VRC-TST approach

Monte Carlo sampling over relative orientation Frozen fragment geometries Adiabatic vibrations Remaining d.o.f.

- + Fully dimensional
- + Fully coupled, anharmonic
- Classical fluxes

Multireference electronic structure theory

Validated for many radical-radical reactions
Typical errors < 25%

Software: VaReCoF, Yuri Georgievskii and Stephen Klippenstein

E.g.: CH₃ + OH, a well-studied system

Experimental (symbols)

- T = 298 K
 - 5: $k = 7-10 \times 10^{-11} \text{ cm}^3/\text{s}$

k, cm³ molecule⁻¹

- 2: higher
- T > 298 K
 - 2: $k \alpha T^0$
 - 1: $k \alpha T^{-n}$

Theoretical (blue lines)

- Previous theory Rates vary by a factor of ~10 Different T-dependences
- Present theory Good agreement at 298 K Very little T-dependence

Jordan et al. (1991)

Xia et al. (2001)

Ing et al. (2003)

- Sworski et al. (1980)
- Anastasi et al. (1991)
- Hughes et al. (1992)
- Deters et al. (1998)
- Oser et al. (1992)
- Fagerstrom et al. (1993) De Avillez Pereira et al. (1997)

CH₃ + OH: Falloff

Experimental falloff

Measured (symbols)
Fits (dotted lines)

- Minor pressure dependence
- Strong high P *T*-dependence

Our theory (solid lines)

- Stronger P dependence
- Less T dependence at high P

Triangles: De Avillez Pereira, Baulch, Pilling, Robertson,

and Zeng, J. Phys. Chem. A 1997, 101, 9681.

Dotted: De Avillez Pereira et al. master equation analysis

Circles: Deters, Otting, Wagner, Temps, László, Dóbé,

Bérces, Ber. Bunsenges. Phys. Chem. 1998, 110, 200

Predictive Energy Transfer Calculations

Direct Classical Trajectories

- Goal: Enable predictive calculations of k(T,p)
- Background: Almost exclusively empirical treatments
- New: Initial conditions consistent with the master equation
 - Full dimensional ab initio PESs
 - Improved sampling, massively parallel architectures

Systems

 $CH_4 \rightleftharpoons CH_3 + H \text{ in He, Ne, Ar, Kr, } H_2, N_2, CO, CH_4$

- Quantify errors associated with approximate PESs
- Test kinetics against experiment for He, Ar, Kr, CH₄

 $C_2H_{3/5} \rightleftharpoons C_2H_{2/4} + H \text{ in He, Ar, N}_2$

Effect of weaker bonds on accuracy of direct trajectories

 C_nH_{2n+2} in He, Ne, Ar, Kr

- · Effect of multiple dissociation channels
- Look for trends to develop predictive models

Non-Born - Oppenheimer Chemistry

Multistate molecular dynamics and transition state theory

DiNT computer code for NBO MD
 Direct methods (Molpro, Gaussian, etc)
 Surface hopping and decay-of-mixing
 Electronic coherence and decoherence

New challenges in multistate MD

Coherent (solid arrow) and decoherent (dashed arrows) motion in coupled systems

Applications

- Photodissociation of NH₃, Na···FH, HBr, CH₃X
- Spin-forbidden processes in combustion O(³P) addition to singlet hydrocarbons H + HO₂, H+NCO, etc
- Use NBO MD to develop NBO TST

Flame Modeling

Detailed chemistry

- Informed by predictive kinetics and experiments
- NOx chemistry
- Aromatics/PAH/soot formation
- Experimental validation and interpretation (Hansen et al.)
- Chemkin
- Modeling by Jim Miller and Nils Hansen

